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SYNOPSIS 

Analytical expressions of shear stress for arbitrary multi-rate-step flows are presented for 
a rate-dependent network model and for a nonaffine network model. For both models the 
linear spectrum is modified to account for large deformations. Predictions of both models 
are evaluated for the following cases: concave steps, reversed steps, and large amplitude 
oscillations. Model predictions are compared to experimental results on a polydimethyl- 
siloxane melt. Quantitative agreement is obtained for both models, which justifies the 
usefulness of the proposed equations for the prediction of shear responses in complex 
transient shear flows. The performance and limitations of the two models are also discussed 
in terms of physical considerations. 0 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

Industrial processes involving the flow of polymer 
melts, solutions, and suspensions are associated with 
complex time-dependent flow histories. To model 
these flows successfully we need constitutive equa- 
tions that can describe the main rheological prop- 
erties of the materials. Transient flows, and in par- 
ticular multistep flows, provide severe tests for the 
evaluation of constitutive equati0ns.l 

Several such tests have been performed and the 
general consensus is that so far no equation can ad- 
equately describe polymeric materials in very com- 
plex flow situations.2-6 

In a previous article we compared the experi- 
mental data on polyethylene in shear-rate reduction 
and interrupted shear flows with the predictions of 
a rate-dependent network (RDN) model and a non- 
affine network (NAN) model.? In this article we 
further explore the capabilities of these two models 
by considering a concave step, a reverse step, and 
large amplitude oscillatory flow. The predictions are 
compared with experimental data on a poIydimeth- 
ylsiloxane (PDMS) melt. 

* To whom correspondence should be addressed. 
Journal of Applied Polymer Science, Vol. 59, 1099-1105 (1996) 
0 1996 John Wiley & Sons, Inc. CCC 00Zl-8995/96/071099-0? 

THEORY 

The constitutive equation of an RDN model, using 
the memory function proposed by De Kee, can be 
written as' 

T = -PI + m[ t -  t', n(t, t ' ) ] G ( t ,  t ' )  dt' ( l a )  J-: 
m[t - t', n(t, t ' ) ]  

where I is the stress tensor; p, the isotropic pressure; 
I, the unit tensor; G ,  the reduced relative Finger 
tensor; qp,  A,, and tp are constants associated with 
the p t h  relaxation mode; c and fo are constants; and 

is the second invariant of the shear rate. 
In an arbitrary multi-rate-step flow history as 

shown in Figure 1, a constant shear rate y k  is main- 
tained between times tk-1 and t k .  The shear stress 
721 at  the present time t ( =t,), can be written as7 

1099 
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The constitutive equation of the chosen NAN 
model is written as  

7 = -PI + G ( t  - t ' ) E ( t ,  t ' ) D * ( t ' )  L 
X Et ( t ,  t ' )  dt' (3a)  

dE ( t ,  t ' )  
d t  

= A ( t ) E ( t ,  t ' ) ,  E(t', t ' )  = I (3b ,c )  

n 

"-21 = Sk 
k-1 

where 

EXPERIMENTAL 

The polymer melt sample chosen is PDMS, a vis- 
coelastic standard material provided by the Rheo- 
metrics Co. All rheological measurements were per- 
formed at  298 K using a Rheometrics RMS-800 cone 
and plate rheometer with a cone angle of 0.1 rad 
and a diameter of 25 mm. 

The data for the dynamic moduli G' and G versus 
frequency w are plotted in Figure 2. The linear re- 
laxation time spectrum is calculated via Tschoegl's 
second a p p r o x i m a t i ~ n ~ ~ ' ~ :  

-.--.-- I o5 -.-- 

where D is the rate of deformation tensor; a ( I3 ) , a 
slip factor; and A, the velocity gradient in the slip 
frame. 

The shear stress 721 ( t )  at time t ( =t,) in a multi- 
rate-step flow history is given by7 

~ lo-' I oo 10' 102 

w ( 5 . 1 1  

Figure 2 The dynamic moduli G' and G" as functions 
of frequency. (0) Data and (- - -) calculated curves from 
the discrete relaxation time spectrum in Table I for the 
PDMS sample. 



SHEAR STRESS FOR MELTS 1101 

A set of discrete values for the relaxation times 
A, and moduli Gp are selected from the continuous 
spectrum according to the following equations 

The values of the discrete spectrum for both 
models are shown in Table I. 

As a check of the procedure used to obtain the 
spectra, the values were used to calculate G' and G" 
from the generalized Maxwell model: 

GpAEw2 
G ' =  c 

p = l  1 + ( A p w ) 2  

p = l  1 + ( A p w ) 2  

GpApw GIf= C 

and the results are shown as broken lines in Fig- 
ure 2. 

The steady shear viscosity and the dynamic vis- 
cosity data are plotted in Figure 3. The values of the 
viscosity at  high shear rates are the absolute values 
of the complex viscosity, assuming the Cox-Merz 
rule to be valid. 

The material parameters in the RDN model are 
A,, q,, fo, and c. The number of modes and hence the 
number of parameters can be chosen to fit the data. 
Using the data obtained from the dynamic tests, un- 

Table I 
PDMS at 298 K 

Discrete Relaxation Time Spectrum for 

Spectrum 

0.0 1000 
0.02187 
0.04782 
0.10456 
0.22865 
0.50000 
1.09336 
2.39088 
5.22820 
11.4326 
25.0000 

3154.4 
35310.6 
24613.3 
1715 1.6 
11051.5 
6412.8 
3295.5 
1518.4 
650.9 
260.2 
0.004 

31.54 
772.25 
1176.5 
1793.4 
2527.0 
3026.4 
3601.4 
3629.0 
3402.9 
2974.1 
0.1 

y ( S - 9  , W ( s - 1 )  

Figure 3 (m) The dynamic viscosity 7' and the complex 
viscosity q* as functions of frequency w together with (0) 
the steady shear viscosity 7 as a function of shear rate i. 
for the PDMS sample. (+) Calculated values assuming 
the Cox-Merz rule to be valid. 

der the assumptions that 7, = GpAp, all the param- 
eters are fixed except for c. In the linear region, f p  

is unity. In the nonlinear regime, fo is not equal to 
one. It can be considered as an adjustable parameter 
to fit the data when the deformation can no longer 
be considered to be small. In the case of the NAN 
model, the only adjustable parameter is a. It will be 
seen later that the values of Gp deduced from the 
dynamic data are too low to fit the experimental 
data for large deformations. 

DISCUSSION 

We compare the theoretical predictions with the ex- 
perimental observations for the following flows. 

Concave-Rate Step Flows 

In a concave-rate step flow, a constant shear rate is 
maintained and is then decreased. The flow is kept 
at  the lower shear rate for a length of time. Unlike 
the strain-rate reduction experiment, in this case 
the strain rate is increased to the initial shear rate, 
and after a lapse of time the flow is stopped. This 
is shown in Figure 4. The corresponding shear stress 
for the RDN model can be calculated from eq. (2a, 
b ) .  Figure 4 shows the shear stress for one set of 
values of A,, 7, and for various values of the adjust- 
able parameter c .  We note that the lower the values 
of c ,  the higher the overshoot and the lower the un- 
dershoot. The values of c do not affect the steady 
values of the shear stress and the stress relaxation. 
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Figure 4 Transient behavior of shear stress for a RDN 
fluid for different values of the parameter c in a concave 
step flow (+ = 0.5, 0.25, 0.5, 0.0 s-I). Model parameters 
are: A, = 1, X2 = 2, = 2, and q2 = 4. 

The second overshoot is found to be lower than the 
first one. This is due to the preshearing of the ma- 
terial. 

Figure 5 compares the predictions of the RDN 
model with the PDMS data for several step rates. 
It can be seen that there is reasonably good agree- 
ment for both transient and steady values of the 
stress. The model predicts a higher overshoot that 
occurs earlier than the one obtained experimentally. 
Adding more modes to the calculation of the stress 
does not appreciably improve the overshoot predic- 
tions. 

0 
0 20 40 60 80 I00 120 140 

t l s )  

Figure 5 Comparison of (0) the measured shear stress 
with the RDN model predictions for concave steps with 
different levels: (1) upper curve: + = 0.5, 0.25, 0.5,O.O s-'; 
(2) = 0.25,0.125,0.25,0.0 SKI; (3) lower curve: = 0.125, 
0.06, 0.125, 0.0 s-'. The calculation is based on the mea- 
sured spectrum from dynamic data for a PDMS sample 
and with c = 1.3 and fo = 1.45 for all steps. 

1 ( 5 )  

Figure 6 Variation of the shear stress of a NAN fluid. 
Effect of the slip parameter a in a concave step flow (+ 
= 0.5,0.25,0.5,0.0 s-l). The model parameters are XI = 1, 

= 2, GI G, = 2. 

The shear stress for the NAN model can be cal- 
culated from eq. (4a-e) and is shown in Figure 6 for 
one set of values of A,, G, and various values of the 
adjustable parameter a .  The lower the values of a ,  
the lower the predicted values of the shear stress. 
We note the absence of a stress overshoot in the 
case where a = 1. Stress overshoot occurs only for 
values of a < 1. This implies that for the NAN model, 
slippage must be present for stress overshoot to oc- 
cur. The lower the value of a, the faster the stress 
wiIl decay to zero when the flow has stopped. 

Figure 7 shows a comparison of the predicted val- 
ues of the NAN model with the experimental values 
of the PDMS material for various step rates. To 

J- A 
140 

t o )  

Figure 7 Comparison of (0) the measured shear stress 
with the predicted value of the NAN model. The rate and 
material parameters are the same as those in Figure 5. a 
= 0.92 for steps where + = 0.5, and a = 0.93 for the other 
steps. 
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strain rate are involved explicitly might be superior 
to a purely strain or strain-rate model. 

0 20 40 60 
t Is) 

Figure 8 Shear stress for reversed shear steps. (-) 
Predictions of the RDN model. The model parameters are 
the same as those in Figure 5 .  (0) Data (PDMS). 

achieve agreement between the predicted values and 
the experimental data, we multiply the moduli Gp 
[ eq. (3d) ] obtained from the linear regime by a con- 
stant (2.29). As can be seen from Figure 7, the 
agreement between the predictions and experimen- 
tal measurements is reasonably good in both tran- 
sient and steady situations. The predicted stress 
overshoot is greater than the measured one, es- 
pecially at the highest shear rate. At high shear rates, 
the stress is predicted to oscillate and this is possibly 
due to the tumbling of the slipping structure that 
causes the major axis of the strain history to rotate." 

Reverse Shear 

In a reverse shear flow, a constant shear rate is 
maintained for a length of time, and then the direc- 
tion of the shear is reversed and kept a t  the same 
magnitude for another period of time. The fluid is 
sheared at a constant rate, but its direction alter- 
nates. The stress can be calculated from eq. (2a, b )  
for the RDN model. Figure 8 shows a comparison 
of the RDN model predictions with the experimental 
data of the PDMS melt. The agreement is equally 
good in the present flow. Similar agreement was ob- 
tained with the NAN model. 

It has been shown that for the reverse shear flow, 
the Kaye-Bernstein-Kearsley-Zapas (K-BKZ) and 
the Doi-Edwards models poorly predict the stress." 
One of the possible causes for this is that these mod- 
els are strain dependent. It was pointed out that in 
flows where there is a jump discontinuity in shear 
rate, the stress might not depend only on the history 
of the strain.'* A hybrid model in which strain and 

Large Amplitude Oscillation 

In this flow, the strain varies sinusoidally with time 
and the amplitude of the oscillation is not small. It 
was found that if the strain amplitude is greater than 
4, the free surface is distorted. The experimental 
data is limited to a strain amplitude of 4. 

Giacomin and OakleyI3 compared the experi- 
mental results of the IUPAC LDPEX in large am- 
plitude oscillations with the predictions of the mod- 
els by Acierno et al., Moldenaers and Mewis, Mewis 
and De Cleyn, and Mewis and Denn. In their anal- 
ysis they expressed the stress as a sum of odd har- 
monics, up to the third harmonic. The discrete Fou- 
rier transform is used to obtain each component. 

In our case the stress is calculated from eq. (2a,b) 
and we obtained the stress from the start up of the 
flow. Figure 9 shows the calculated values of stress 
versus the shear strain and the shear rate for the 
RDN model. The values of the model parameters 
are the same as those considered in the previous two 
flows. We discretized the period into 24 and 48 steps. 
It can be seen from Figure 9 that, in the case of 
stress versus shear rate, the results using 24 and 48 
steps are not markedly different. Due to nonlinearity 
and memory, the area of the stress against the shear 
rate loop is nonzero. The points in Figure 9 are joined 
linearly and so the curves are rather jagged. The 
convergence for the stress against shear is not as 
good as in the case of stress versus shear rate. We 
believe that 48 steps are adequate for the accuracy 

5 6 ______.__.. ...- .....__. __..... . 
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Figure 9 Stress (rZ1) versus strain (y) and strain rate 
(4) for different steps. The frequency w = 1 rad/s, ampli- 
tude strain y = 4, and model parameters are as in Figure 
5. (-) 48 steps; ( - - .) 24 steps. 
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we can expect. In Figure 10 we compare the predicted 
values of the stress against the shear with the ex- 
perimental values. The calculations are based on 48 
steps. It can be seen that the agreement between 
the predictions and the measurement is good, in- 
cluding that at  the start-up of the flow. We note 
that the predicted stress overshoot occurs earlier 
and is smaller in magnitude compared to the mea- 
sured one. 

Figure 11 shows the curves of stress versus strain 
and shear rate for shear amplitudes of 2 and 4. The 
curves are observed to be similar. The stress growth 
curves from the state of rest in both cases are iden- 
tical. 

CONCLUSIONS 

A strain-rate dependence has been introduced in t.he 
integral constitutive equation of the finite linear 
viscoelasticity by 

1. modifying the memory function so that it is 
both a function of time lapse and rate-of- 
strain; and 

2. allowing the possibility of slippage and the 
Finger tensor is modified to a generalized 
strain. 

Analytical expressions of the shear stress for ar- 
bitrary multi-rate-step flows for both models were 
derived. The predicted values of the shear stress 
agree reasonably well with the measured values of 

-6 ' 
-40000 0 4oooo 

Stress ( Pa) 

I I 

Figure 10 Stress (T2,)-strain (7) evolution at  large am- 
plitude sinusoidal deformation amplitude strain and fre- 
quency as in Figure 9. The curve is the prediction of the 
RDN model using the model parameters given in Figure 
5. (0) Data (PDMS). 

I -5 ' ' -6 
-40000 0 40000 
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Figure 11 Stress ( T ~ J  versus strain (y) and strain rate 
(t) for different amplitudes. The frequency model param- 
eters are as in Figure 9 and the number of steps is 48. 
(-) amplitude 4; ( - - - ) amplitude 2. 

a PDMS melt in a concave flow, reverse flow, and 
large amplitude oscillatory flow. Appropriate values 
of Gp were introduced to successfully predict the 
shear stress in linear as well as nonlinear regimes. 
In a small amplitude oscillatory flow, the rate of 
change of entanglements is governed by the diffusion 
process only. In a finite deformation flow, both dif- 
fusion and deformation will contribute to the change 
of structure. Thus the data from dynamic tests only 
are insufficient. 

We have shown that the constitutive equations 
considered in the present study are adequate for a 
PDMS melt in complex flows where a jump discon- 
tinuity in the shear rate is imposed. It is suggested 
that in flows where a jump discontinuity is imposed 
on the shear rate, a shear dependent constitutive 
equation might be inadequate. 

It can be observed in Figures 5, 7, and 8 that the 
imposed step jumps in the shear rate lead to step 
jumps in the shear stress. In step-strain experiments, 
the shear stress usually undergoes a more gradual 
~hange.~." It may be desirable to test the present 
constitutive equations for step-strain data. However, 
it can be argued that the step-strain rate experiment 
is a more severe test to evaluate constitutive equa- 
tions. In addition, equations that adequately describe 
step-strain rate experiments can describe step- 
strain experiments equally well. This is confirmed 
for the large amplitude oscillatory flow where the 
strain is changed sinusoidally and the stress ver- 
sus the strain curves are smooth, as shown in Fig- 
ures 9-11. 

D. De Kee wishes to acknowledge financial support from 
the Natural Sciences and Engineering Research Council 



SHEAR STRESS FOR MELTS 1105 

of Canada. Also, the award of an NSERC International 
Scientific Exchange Award made Y. Xu’s participation 
possible. The authors thank the Rheometrics Co. for the 
measurements of the experimental data. 

REFERENCES 

1. J. M. Dealy and K. F. Wissbrun, Melt Rheology and 
Its Role in Plastic Processing. Theory and Applications, 
Van Nostrand Reinhold, New York, 1990. 

2. K. Osaki and M. Kurata, Macromolecules, 13, 671 
(1980). 

3. K. Osaki, S. Kimura, and M. Kurata, J .  Rheol., 25, 
549 ( 1981 ) . 

4. C. M. Vrentas and W. W. Graessley, J .  Rheol., 26, 
359 ( 1982). 

5. J. S. Vrentas, C. M. Vrentas, and D. C. Venerus, Mac- 

6. D. C. Venerus and H. Kahvand, J .  Rheol., 38,1297 

7. Y. Z. Xu, D. De Kee, and C. F. Chan Man Fong, J .  

8. D. De Kee, Ph.D. thesis, University of Montreal, 1977. 
9. J. D. Ferry, Viscoelastic Properties of Polymers, 2nd. 

ed., Wiley, New York, 1970. 
10. N. W. Tschoegl, The Theory of Linear Viscoelastic Be- 

havior, Springer-Verlag, New York, 1988. 
11. R. G. Larson, Constitutive Equations for Polymer Melts 

and Solutions, Butterworths, New York, 1988. 
12. J. G. Oldroyd, Proc. Roy. SOC., A283, 115 (1965). 
13. A. J. Giacomin and J. G. Oakley, J. Rheol., 36, 1529 

romolecules, 23, 5133 (1990). 

( 1994). 

Appl. Polymer Sci., 55, 779 ( 1995). 

( 1992). 

Received April 12, I995 
Accepted July 26, 1995 




